In Situ Visualization of Structural Evolution and Fissure Breathing in (De)lithiated H$_2$V$_3$O$_8$ Nanorods

Yi Wu,†,‡,§ Xiaoming Xu,†,‡ Chongyang Zhu,†,‡ Pengcheng Liu,§ Shize Yang,‖ Huolin L. Xin,† Ran Cai,† Libing Yao,† Meng Nie,† Shuangying Lei,† Peng Gao,§ Litao Sun,§,‖ Liqiang Mai,§,‖ and Feng Xu*,†

†SEU-FEI Nano–Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
‡State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan 430070, China
§Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
‖Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
¶Department of Physics and Astronomy, University of California, Irvine, California 94720, United States
∇Electron Microscopy Laboratory, and International Centre for Quantum Materials, School of Physics, Peking University, Beijing 100871, China

*Supporting Information

ABSTRACT: Layered H$_2$V$_3$O$_8$ material consisting of V$_3$O$_8$ layers features the elastic space for buffering volume change upon repeated ion (de)intercalations. However, its ion transport and phase transformations still remain largely unknown due to lack of direct evidence. Here we employ in situ transmission electron microscopy to revisit this material carefully. Upon lithiation, the localized phase transformation from H$_2$V$_3$O$_8$ to V$_2$O$_3$ via an intermediate VO$_2$ phase was observed, and large structural fissures gradually formed. Unexpectedly, the large fissures were able to self-heal during delithiation with the VO$_2$ phase as the delithiated product. The fissures could appear and disappear alternately upon subsequent (de)lithiation, in which a stable and reversible phase transformation between V$_2$O$_3$ and VO$_2$ phases was established. These unreported findings are expected to call for renewed attention to this electrode material for a more comprehensive understanding in rechargeable metal-ion batteries.

Rechargeable lithium-ion batteries (LIBs) currently dominate the portable electronic product market because of their high energy density and superior cycle life.1–5 However, the increasing demands for electric vehicles and strategic layout of the energy grid have forced us to develop low-cost and high-performance LIBs.6–9 In this regard, vanadium oxides have been considered promising electrode materials in LIBs due to their high theoretical capacity and abundant mineral sources.10–14 Especially, vanadium oxide H$_2$V$_3$O$_8$ with mixed valence and good electronic conductivity has attracted great concern.15–19 The crystal structure of H$_2$V$_3$O$_8$ consists of V$_3$O$_8$ layers stacked along the a-axis, thus affording interlayer vacant sites (Figure S1, Supporting Information). The V$_3$O$_8$ layers are interlinked by hydrogen bonds; each V$_3$O$_8$ layer is composed of VO$_6$ octahedra and VO$_5$ trigonal bipyramids. VO$_6$ octahedra share corners with edge-sharing VO$_5$ trigonal bipyramids and share edges with neighboring ones stacked along the c-axis, forming a two-dimensional slab in the bc-plane.20,21 Adjacent V$_3$O$_8$ layers are connected by hydrogen bonds. Benefiting from hydrogen bond vibrations, such V$_3$O$_8$ layers possess elastic spaces for buffering volume change. Additionally, V$^{5+}$ and V$^{4+}$ exist together in H$_2$V$_3$O$_8$ with a ratio of 2:1, resulting in a reduced mixed valence (+4.67) that contributes to high electrical conductivity.22–25 Moreover, the large interlayer spacing (∼8.5 Å) between V$_3$O$_8$ layers can accommodate larger charge carriers than Li ions. With these merits, H$_2$V$_3$O$_8$ has shown its...
potential as an intercalation electrode for lithium-, sodium-, zinc-, and magnesium-ion batteries.26–29

Although the intercalation mechanism associated with the layered structure of H2V3O8 has been well documented in various batteries, the structural advantage has still not been fully understood due to lack of direct evidence. Particularly, the dynamics of ionic transport and phase evolutions in such a structure still remains largely unknown. Unlike the bulk-based techniques (e.g., in situ X-ray diffraction and absorption spectroscopy) that gather global information from bulk materials or ex situ techniques that are subjected to potential sample contamination, the recently developed in situ transmission electron microscopy (TEM) approach with higher spatial and temporal resolution can directly observe the localized microstructure and phase evolutions down to the atomic scale within a short time scale.30–34 Thus, the in situ TEM technique can provide supporting information that cannot be obtained by the ex situ or bulk-based techniques. Nanoscale and even atomic-scale visualization evidence has achieved great success in understanding underlying reasons behind new phenomena discovered recently in the field of battery research.

Herein, we employed an ensemble of in situ TEM approaches, including high-resolution imaging, localized electron diffraction (ED), and electron energy loss spectroscopy (EELS), to revisit the H2V3O8 material during (de)-lithiation. Real-time tracking of ion insertion and extraction processes in well-crystallized H2V3O8 nanorods (NRs) was carried out by in situ TEM observation. Upon lithiation, the H2V3O8 NRs undergo a localized phase transition from pristine H2V3O8 to the V2O3 phase via an intermediate phase VO2, as confirmed by the ED patterns. As the lithiation advances, structural fissures begin to occur and gradually extend, with their length directions basically parallel to the NR axes. The fissures that were considered an omen of irreversible structural degradation in previous reports are able to self-heal here upon subsequent delithiation. Interestingly, the fissures can appear and disappear repeatedly during multiple lithiation/delithiation processes, which is like breathing. Therefore, we, for the first time, name the observed self-healing of the fissures “fissure breathing”. Obviously, this phenomenon subverts a commonly accepted understanding, that is, the serious structural degradation in electrode materials is basically irreversible. These findings in the present work are expected to attract more attention to this material for a precise structure–property relationship, particularly toward achieving advanced functional batteries.

The phase purity of the as-synthesized material has been confirmed by Rietveld refinement of the X-ray diffraction (XRD) pattern, as shown in Figure 1a. The corresponding refinement parameters are presented in Table S1. All of the peaks can be well indexed to the orthorhombic H2V3O8 (JCPDS No. 85-2401, space group: Pnam, a = 16.9298 Å, b = 9.3598 Å, c = 3.6443 Å), which indicates the high purity of the sample. The sharp diffraction peaks reflect good crystallinity of H2V3O8 NRs, and the low-angle (200) peak reveals a large interlamellar spacing of about 8.5 Å.35 A photograph of the H2V3O8 sample is inset in Figure 1a. The morphology of the sample is observed by SEM and STEM, as shown in Figure 1b–e. A one-dimensional rod-like shape with a smooth surface is identified to grow along the [001] direction. The NRs are several micrometers in length and about 100 nm in diameter. The ED pattern in Figure 1c reveals the monocrystalline feature of the H2V3O8 NRs. The STEM image in Figure 1d shows ordered lattice fringes of 0.46 and 0.34 nm, corresponding to (020) and (011) planes of H2V3O8, respectively.

Further, the atomic-resolution STEM image in Figure 1e clearly identifies the quasi-hexagon arrangement of the V atom column (marked with red dots), matching well with the atomic
structure model of H$_2$V$_3$O$_8$ consisting of VO$_6$ octahedra and VO$_5$ trigonal bipyramids, as illustrated in Figure 1f. Two VO$_6$ octahedra are piled up along the c-axis by sharing edges and are connected by two edge-shared VO$_5$ trigonal bipyramids along the b-axis, forming a V$_3$O$_8$ layer along the a-axis. In addition, hydrogen atoms are bonded to oxygen atoms labeled O(6) in VO$_6$ octahedra, forming hydrogen bonds and holding V$_3$O$_8$ layers, thus yielding a 3D structure. These special hydrogen bonds can buffer the structure expansion/contraction when the ions insert into or extract from the interlamination of H$_2$V$_3$O$_8$. The valence state of the vanadium is further investigated by X-ray photoelectron spectroscopy (XPS) in Figure S2 (Supporting Information). Two asymmetrical peaks, corresponding to V 2p$_{3/2}$ and V 2p$_{1/2}$ orbitals, respectively, can be clearly observed at 518 and 525 eV. The V 2p$_{3/2}$ can further be divided into two different peaks of V$^{4+}$ (516.3 eV) and V$^{5+}$ (517.9 eV). By fitting the curve, the V$^{5+}$/V$^{4+}$ ratio is calculated to be 2.03, very close to the theoretical value 2.00 of the V$^{5+}$/V$^{4+}$ ratio in H$_2$V$_3$O$_8$.

The all-solid nanosized LIBs that enable the real-time observation of the in situ (de)lithiation process of samples were constructed inside of a TEM, as schematically shown in Figure 2a. The morphology evolution observed experimentally during (de)lithiation of H$_2$V$_3$O$_8$ NRs is sampled by a series of still images. Figure 2b shows three overlapped NRs (termed I, II, and III) that contacted directly with the Li resource. Upon applying a potential, lithium transport in the NRs propagated along the longitudinal direction starting from the point of contact with the Li resource. We observed obvious changes in the interior contrast of NRs where the flowing strain region began to occur. After 3 s, three distinct lithiation reaction fronts (RFs, marked with red, yellow, and green arrows, respectively) appeared, specifically characterized by slight cross-sectional expansion, and propagated longitudinally (Figure 2c), while the regions behind them underwent a radial expansion of around 8.15% (from 163 to 177 nm, from 118 to 128 nm, and from 91 to 99 nm, respectively). Subsequently, the RFs advanced shoulder to shoulder at an equal speed, as shown in Figure 2d−f. At 42 s, the RFs propagated 365 nm within 39 s, corresponding to a speed of 9.36 nm s$^{-1}$ (Figure 2g). Interpreting this as a lower-bound diffusivity (D) implied a value of \sim1.7 \times 10$^{-15}$ m2 s$^{-1}$ based on the Einstein–Smoluchowski relation, $D = L^2/2t$. Although there could be a higher diffusivity of Li$^+$ ahead of the RF, the
value is difficult to judge only via TEM imaging contrast. For the regions of the NRs behind the RFs, the image contrast exhibited totally different appearance from that before the RFs. This observation confirms that the observed morphological changes were due to electrochemical lithiation rather than electron beam-induced phase decomposition, as corroborated by repeated careful in situ experiments (Figure S3 in the Supporting Information).

To probe the dynamics of lithium-ion transport in $\text{H}_2\text{V}_3\text{O}_8$ NRs, the RF displacements of several NRs are plotted as a function of time, Figure 2h. All curves show linear correlation, indicating that the RF motion of each NR during lithiation is characterized by isokinetic lithium diffusion. We also notice different diffusivities for these NRs, and the average moving speed of these RFs is measured to be $\sim 1-10$ nm s$^{-1}$. Different diffusivities are possibly attributed to the differences in the electrode contact and the local Li$^+$ concentration.33 Moreover, the longitudinal elongation of a NR during lithiation can be estimated quantitatively in Figure 2i−l (Movie S2, Supporting Information). The pristine NR was elongated from 169 to 205 nm within 326 s, corresponding to a longitudinal elongation of 21.30%, as a result of the insertion of lithium ions into the NR (note that the thickness of the Li$_2$O layer on the surface of the NR was not included in the estimation). Given that there is a Li concentration gradient along the NR, the actual value may be higher than 21.30%. The irregular Li$_2$O bubbles observed in the lower left portion of the NR in Figure 2l can be induced by the fast diffusion of Li species along the NR, which is the inherent phenomenon of the in situ TEM experiments.32,40

Figure 3. (a−d) HRTEM images of the lithiation process from a video with an inset of the corresponding FFT patterns. The yellow outlines highlight the visible fissure domains upon the lithiation process. (e) Interplanar spacing of the (110) (α_{110}) value variation in the lithiation process. (f) Distribution statistics of the angle between the fissure and NR axis. (g) EELS spectra of V/L$_{3,2}$ edges in the first lithiation process. (h) ED patterns used for identifying the phase evolution in the first electrochemical lithiation process. (k) Ex situ TEM images and corresponding FFT patterns of H$_2$V$_3$O$_8$ at the lithiation state at 100 mA g$^{-1}$. Scale bars, (a−d) 10 nm, (g−i) 2 nm, and (k) 10 nm.
reaction can be maintained for H2V3O8 within five Li’s per formula unit (480 mAh g−1). The intercalation of lithium ions directly leads to the fluctuation in the (110) lattice, as reflected by the FFT patterns in Figure 3a–d. The interplanar spacings of the (110) plane at different lithiation stages are obtained and are plotted as a function of lithiation time in Figure 3e. One can find that H2V3O8 NRs undergo obvious “lattice breathing” that the d110 decreases slightly in the initial stage and subsequently increases. Similar lattice breathing is also found for other NRs, as shown in Figure 3e. The shrinkage of d spacing is caused by the strong interaction between the positively charged Li+ and V3O8 bilayers. Subsequently, the slight increase in d spacing is attributed to the intercalation of more Li+, which expands the interlayer spacing. We note that during the first lithiation structural fissures with low contrast are also formed in H2V3O8 NRs (Figures 3a–d and S4a–c and Movie S4, Supporting Information). They gradually grow larger in both longitudinal and lateral directions as the lithiation proceeds, finally evolving into ellipse shape. These structural fissures have their length directions basically parallel to the NR axes, as verified by three as-formed fissures in Figure 3d. The statistics of the angles between the fissures and NR axis are shown in Figure 3f. Obviously, most of the angles are in the range from 0 to 10°.

No distinct lattice fringes are observed in the region of fissures, which may suggest a different lithiation level other than the intercalation.

To deeply understand the fundamental reaction mechanisms during lithiation of H2V3O8, time-lapsed ED patterns are arrayed in the order of Li+ content from low to high in Figure 3g–i. The original H2V3O8 NR shows an obvious single-crystalline feature (Figure 3g), in which the diffraction spots marked by blue dotted rings can be indexed as the (111) and (011) planes of the H2V3O8 phase. Upon initial lithiation, the diffraction spots belonging to the initial H2V3O8 phase basically remain, but new diffraction rings corresponding to the VO2 phase (JCPDS No. 25-1003) and Li2O phase (JCPDS No. 73-0593) are detected, as shown in Figure 3h. With further lithiation, Figure 3i reveals the presence of new diffraction rings belonging to the V2O3 phase (JCPDS No. 39-0774). In addition, it is found that some lattice fringes belonging to the H2V3O8 phase could still be observed in Figure 3d, which indicates that the H2V3O8 NRs cannot reach full conversion. In other words, the intercalation reaction and conversion reaction coexist after full lithiation. Combining the above HRTEM observation and ED analysis, we can infer that the conversion reaction should occur only in the region of fissures in lithiated NRs, considering the fact that other regions in NRs still remain...
The possible reactions involved during the first lithiation process are described as follows:

\[\text{H}_2\text{V}_3\text{O}_8 \rightarrow \text{Li}_x\text{H}_2\text{V}_3\text{O}_8 \rightarrow \text{VO}_2 + \text{Li}_2\text{O} \rightarrow \text{V}_2\text{O}_3 + \text{Li}_2\text{O}. \]

Note that the scattering power and the structural factor of the H atom are very small, and its position is difficult to determine; therefore, the influence of the H atom can be ignored in the case of ED.28 EELS white lines of transition metals, which include rich information about the density of unoccupied states near the Fermi level, can be used to quantitatively analyze the chemical element. Here, the difference in energy onset between the oxygen K edge and the transition metal V-L\text{2,3} edges of oxides from the partially lithiated NR are obtained and given in Figure 3j. Generally speaking, these L\text{3} edge onset energies show a monotonic increase with cation oxidation state. For the VO\text{2} oxides, H\text{2}V\text{3}O\text{8} (V\text{4.67}+) and VO\text{2} (V\text{4}+) are used as valence standard, and the relationship can be fitted linearly,

\[E_{L3} = a \cdot V + b, \]

with \(a = 1.49 \) and \(b = 514.24. \)43 Initially, the average oxidation state of vanadium is +4.67. After the first lithiation process, the value can be estimated as +3.06 from the linear relationship, which is nearly approximate to V\text{2}O\text{3} (+3), corroborating the TEM results. A coin cell with H\text{2}V\text{3}O\text{8} NRs as the working electrode has also been conducted to verify the lithiated products after discharging at 0.2 V (vs Li+/Li). Figure S5 shows that the NR morphology remains integrated after discharging. Further, Figure 3k shows the lattice fringes observed with \(d \)-spacings of 0.245 and 0.251 nm, agreeing with the (41−2) and (120) planes of V\text{2}O\text{3}, respectively. Similar results are also found when the H\text{2}V\text{3}O\text{8} NRs are discharged at the potential down to 1 V vs Li+/Li (Figure S6). All of these findings fully confirm the phase transformations in above-mentioned conversion reactions during the first lithiation process.

During delithiation, a constant positive potential was applied on the already lithiated H\text{2}V\text{3}O\text{8} NRs with respect to the lithium counter electrode. Figure 4a−e,g–k (Movies S5 and S6, Supporting Information) show the electrochemical delithiation behaviors of lithiated H\text{2}V\text{3}O\text{8} NRs. With the extraction of lithium ions, the diameter of the lithiated NR in Figure 4g–k gradually shrinks from 98.6 to 91.1 nm within 248 s, resulting in a contraction of 7.6%. Moreover, it is found that the diameter shrinkage is about 9.8% for another NR in Figure 4a−e. Interestingly, we find that the delithiation process is accompanied by the disappearance of the fissures. Figure 4f shows the diameter changes of several NRs as a function of delithiation time, and the NRs all exhibit a similar tendency that the diameter shrinks first rapidly and then slowly. The Li\text{2}O layers on the surface of the H\text{2}V\text{3}O\text{8} NRs also vanish. The ED patterns of delithiated NR were also recorded to identify phase evolutions, as displayed in Figure 4l−n. Upon delithiation, the diffraction rings attributed to V\text{2}O\text{3} and Li\text{2}O phases gradually disappear and the VO\text{2} phase is detected as the finally delithiated product, indicating that the delithiation process is an asymmetric reaction relative to the first lithiation process. However, it is found that periodic diffraction spots of H\text{2}V\text{3}O\text{8} are still visible. A coin cell with H\text{2}V\text{3}O\text{8} NRs after charging at 100 mA g\text{−1} has also verified the VO\text{2} phase as the delithiated product, as revealed in Figure 4o. In addition, no fissures are formed in the ex situ sample. In a way, we can speculate that the breathing fissures may be transient and

Figure 5. (a−g) Microstructure evolutions of the H\text{2}V\text{3}O\text{8} NR in the electrochemical lithiation/delithiation cycle processes. Scale bar, 50 nm. (h) Measured diameters versus electrochemical cycling times of the H\text{2}V\text{3}O\text{8} NR. The numeric percentages are for the diameter expansion/contraction during each event. (i−m) ED patterns of the first (i−k) and the second (l−m) lithiation/delithiation products to identify the overall reaction mechanism of H\text{2}V\text{3}O\text{8} in LIBs. Scale bar, 5 1/nm.
happen only in the (de)lithiation process. For these reasons, the breathing fissures have not been found so far, indicating that in situ TEM is powerful for probing new phenomena in battery electrode materials.

To further demonstrate long-term structural restorability of H$_2$V$_3$O$_8$, electrochemical lithiation and delithiation cycles have been performed. As displayed in Figure 5 (Movie S6, Supporting Information), the H$_2$V$_3$O$_8$ NR exhibits multiple reversible volume expansions and contractions with the insertion and extraction of lithium ions (Figure 5a–g). Figure 5h further displays the specific diameters for each cycle. From Figure 5a–h, we can see that the H$_2$V$_3$O$_8$ NR could nearly retain a similar size, and the fissures are also self-healing. These results demonstrate that the H$_2$V$_3$O$_8$ NR as an electrode material is viable for recyclable LIBs. Figure 5i–m presents the ED patterns of the H$_2$V$_3$O$_8$ NR during the first two cycles. It can be seen that the lithiated products can always be well indexed to V$_2$O$_3$ and Li$_2$O, which are further converted into

Figure 6. Schematic illustration of the conversion mechanism of the H$_2$V$_3$O$_8$ material during its first and subsequent electrochemical lithiation/delithiation cycles.

Figure 7. (a) Schematic illustration of the “breathing fissure” occurring in the H$_2$V$_3$O$_8$ NR upon (de)lithiation. The breathing fissure is like a mouth by which a goldfish breathes. The length and width of some fissures during (b) lithiation and (c) delithiation processes are plotted as a function of time.
VO₂ after the first delithiation process. It is worth noting that the initial H₂V₃O₈ periodic diffraction spots are always present during the entire cycles, indicating the coexistence of the conversion and intercalation mechanisms. In addition, the ED patterns of the second (de)lithiated products indicated that the subsequent electrochemical cycles are reversible between the VO₂ and V₂O₃ phases, rather than the original H₂V₃O₈ phase. The EELS spectra collected at the fissures further proved the valence variation of element V during the first two cycles, as shown in Figure S7. The asymmetric phase transformation could result in irreversible capacity loss in the initial cycle, as indicated by the electrochemical discharge–charge cycle tests in Figure S8. In situ XRD measurement was also applied to further investigate the structural evolution of the H₂V₃O₈ electrode during the lithiation process. As shown in Figure S9, when the electrode discharges to 0.5 V (vs Li⁺/Li) for deep lithiation, reflections corresponding to (020), (520), and (511) peaks are observed with a slight shift, which indicates that the intercalation mechanism is the dominant reaction during deep lithiation of H₂V₃O₈. Consequently, the whole lithiation and delithiation reactions of H₂V₃O₈ NR can be expressed by the following equations and also can be visualized in Figure 6.

\[
\begin{align*}
\text{H}_2\text{V}_3\text{O}_8 + x\text{Li}^+ + xe^{-} & \leftrightarrow \text{Li}_x\text{H}_2\text{V}_3\text{O}_8 \\
2\text{Li}_x\text{H}_2\text{V}_3\text{O}_8 + (4 - 2x)\text{Li}^+ + (4 - 2x)e^{-} & \leftrightarrow 6\text{VO}_2 + 2\text{Li}_2\text{O} + 2\text{H}_2\text{O} \\
2\text{VO}_2 + 2\text{Li}^+ + 2e^{-} & \leftrightarrow \text{V}_2\text{O}_3 + \text{Li}_2\text{O}
\end{align*}
\]

The schematic diagram of the breathing fissures during repeated lithiation and delithiation cycles is illustrated in Figure 7a. We use the breath of a goldfish to vividly delineate the evolution of the breathing fissures, as inset in Figure 7a. To probe the extension and shrinkage dynamics of the fissures in NRs, the length and width of some fissures during lithiation and delithiation are plotted as a function of time, as shown in Figure 7b,c, respectively. According to the statistical results, we find that the fissures grow initially quickly and then slowly during the lithiation. However, in the case of the delithiation, the fissures initially do not respond to the delithiation immediately. With further extraction of Li ions, the fissures shrink rapidly and gradually self-heal. It is believed that a certain amount of energy is required for phase transformations at the initial stages. On the basis of the above discussions, we believe that the local phase transformations result in the accumulation of internal stress in NRs during lithiation, which in turn leads to the generation of fissures at the grain boundary or defect sites. Previous works have affirmed that such structural fissures are considered one of main reasons for degrading of the electrode materials. On the one hand, the fissures can lead to poor electrical conductivity, poor intergranular connections, and loss of active materials due to fragmentation. On the other hand, the fissures create fresh surfaces that will be exposed to electrolytes and generate new sites for surface phase transformation, corrosion, and side reactions, thus accelerating battery degradation. However, the fissures here in H₂V₃O₈ associated with conversion reactions are repairable, which has been corroborated by in situ TEM observations during repeated electrochemical cycles. In short, we for the first time not only clarify the conversion reaction in H₂V₃O₈ but also show the self-healing behavior of the fissures in this material. These insights and understanding would provide important guidance to make H₂V₃O₈ a promising electrode for advanced rechargeable batteries.

In conclusion, the electrochemical lithiation and delithiation behaviors of H₂V₃O₈ NRs have been investigated by an in situ TEM approach. Upon initial lithiation, the orthorhombic H₂V₃O₈ follows an intercalation mechanism, and subsequent lithiation results in a localized intermediate VO₂ phase that is further converted into the V₂O₃ phase, accompanied by small volume expansion. Moreover, large structural fissures are formed in H₂V₃O₈ NRs during lithiation. During delithiation, the V₂O₃ phase is transformed into the VO₂ phase, rather than the original H₂V₃O₈ phase. Such a localized phase transformation between the VO₂ phase and V₂O₃ + Li₂O phases is reversible during subsequent cycles. Meanwhile, the fissures could appear and disappear alternately. Our findings provide an in-depth understanding of the electrochemical mechanism of H₂V₃O₈ NRs during the whole process of lithiation and delithiation, with the hope of assistance in designing LIBs with improved performance.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.9b01381.

Movie showing a lithiation segment where reaction fronts inside of single-crystalline H₂V₃O₈ NR propagated along the longitudinal direction (MP4)

Movie showing a lithiation segment of another H₂V₃O₈ NR (MP4)

Movie showing a high-resolution lithiation process of an individual H₂V₃O₈ NR (MP4)

Movie showing a high-resolution lithiation process of another H₂V₃O₈ NR (MP4)

Movie showing microstructure evolutions of H₂V₃O₈ NR in the first delithiation processes (MP4)

Movie showing microstructure evolutions of an individual single-crystalline H₂V₃O₈ NR in the first four electrochemical lithiation/delithiation processes (MP4)

Experimental details; crystal structure and XPS spectrum of core level V 2p of H₂V₃O₈, TEM images without electron beam irradiation and high-resolution TEM images of H₂V₃O₈ NR in the first lithiation process, and low-magnification TEM image of H₂V₃O₈ NR obtained from coin-type half cells after discharging at 0.2 V (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: sflt@seu.edu.cn (L.T.S).
*E-mail: mlq518@whut.edu.cn (L.Q.M).
*E-mail: fxu@seu.edu.cn (F.X).

ORCID
Pengcheng Liu: 0000-0002-9530-9267
Shize Yang: 0000-0002-0421-006X
Peng Gao: 0000-0003-0860-5525
Litao Sun: 0000-0002-2750-5004
Liqiang Mai: 0000-0003-4259-7725
Feng Xu: 0000-0001-7738-9673

Author Contributions
ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (11774051, 61574034, 11774052, 11525415, and 51420105003), the 973 Program (2015CB352106), the Fundamental Research Funds for the Central Universities (2242018k1G012), the Scientific Research Foundation of Graduate School of Southeast University (YBJ1661), the China Postdoctoral Science Foundation Funded Project (2014M550259, 2015T80480), and Jiangsu Planned Projects for Postdoctoral Research Funds (1401006A).

REFERENCES

